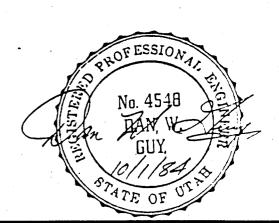
Appendix 5-2
Coal Pillar Sizing Report

COAL PILLAR SIZING


GENWAL MINE

Emery County, Utah

Prepared By:

Dan W. Guy, P.E.

Blackhawk Engineering Co.

Rt. 1, Box 146-H5 - Helper, Utah 84526 - Telephone (801) 637-2422

Coal Pillar Sizing - Genwal Mine

Scope: This report is presented at the request of Mr. Bill Wolen of Genwal Coal Co.. Specifically, Blackhawk Engineering was asked to evaluate the feasibility of using 60'x60' centers on the entries and rooms projected for future mining in the Genwal Mine, and to compare extraction ratios and pillar strengths with the present 80'x 80' center projections.

Procedure: Various pillar sizes were evaluated at cover depths of 700' and 1000'. A factor of safety was then calculated for each of the pillar sizes, and this safety factor was related to the relative importance and longevity of the projected mining areas (i.e.-Mains vs. Rooms).

Criteria: The following criteria were used in the evaluation:

- (1) Jompressive strength of the coal 1400 psi.
 - Note: Jompressive strengths of coals in this area are highly variable and may run from 1200 to 1800psi; however, a conservative figure of 1400 psi has been assumed due to unavailable test data for this mine.
- (2) Mining Height 61.
- (3) Entry Width 201.

Rt. 1, Box 146-H5 - Helper, Utah 84526 - Telephone (801) 637-2422

- (4) Minimum acceptable safety factor for Mein entries 1.5.
- (5) Minimum acceptable safety factor for Rooms 1.3.
- (ó) Main Entries are assumed to have to remain in place greater than 2 years. (Long Term).
- (7) Rooms will be driven and left or pillared shortly after development (Short Ferm).
- (8) Overourden Density = 145 los./ft. or 1.0 psi per foot of overourden.

Rt. 1, Box 146-H5 - Helper, Utah 84526 - Telephone (801) 637-2422

Equations for Pillar Size Safety Factors for Genwal Mine

Coal Strength - 1400 psi. = C

Pillar Strength - $C_p = C (.778 + .222 (\frac{W}{u}))$

C_p = Pillar Compressive Strength
W = Width of Pillar

H = Height of Pillar

Recovery Factor - $R = \frac{A_0}{A_1}$

 A_0 = Area of Entry

R = Recovery Factor

At = Total Area

Safety Factor - F.S. = C_p (1-R) / S_v

Cp = Compressive Strength of Pillar

R = Recovery Factor

Sy = Vertical Stress = Overburden Thickness x Density

F.S. = Factor of Safety

"Rock Mechanics and the Design of Structures in Rock", by Obert and Duvail, (pp. 540-543).

"Mining Engineering Handbook", Volume I, (pp. 7-40 to 7-43).

Rt. 1, Box 146-H5 - Helper, Utah 84526 - Telephone (801) 637-2422

Calculations

40'x 40' Pillars (60' Centers)

 $C=14COpsi; W = 40!; L = 4C!; W_0 = 2C!; H = 6!.$

 $C_p = 1400 (.778 + .222(40/6)) = 3161 psi$

 $R = 20 \times (60 + 40) / 60 \times 60 = .56$

© $S_v = 700 \text{ psi } (700^{\circ} \text{ Gover}), \text{ F.S.} = 3161 (1-.56)/700 = 1.99$

 \leq S_v = 1000 psi (1000' Cover) F.S.= 3161 (1-.56)/1000= 1.39

40'x 100' Pillars (ó0'x 120' Centers)

 $C = 1400 \text{ psi; } W = 40^{\circ}; L = 100^{\circ}; W_{0} = 20^{\circ}; H = 6^{\circ}.$

 $C_p = 1400 (.778 + .222 (40/6)) = 3161 psi$

 $R = 20 \times (60 + 100) / 60 \times 120 = .44$

 \leq S_v = 700 psi (700' Cover), F.3. = 3161 (1-.44)/700 = 2.53

 \leq S_v = 1000 psi (1000 Cover), F.S. = 3161 (1-.44)/1000= 1.77

60'x 50' Pillers (30' Jenters)

C = 1400 psi; $W = 60^{\circ}$; $L = 60^{\circ}$; $W_0 = 20^{\circ}$; $H = 6^{\circ}$.

 $C_p = 1400 (.778 + .222(60/6)) = 4197 psi$

 $R = 20 \times (80 + 60) / 80 \times 80 = .44$

 $S_{v} = 700 \text{ psi} (700 \text{ Cover}), \text{ F.S.} = 4197 (1-.44)/700 = 3.36$

@ Sv = 1000 psi (1000' Cover), F.S. = 4197 (1-.44)/1000 = 2.35

Rt. 1, Box 146-H5 - Helper, Utah 84526 - Telephone (801) 637-2422

Conclusions:

Based on the calculations, room pillars driven on 60' centers (40'x 40' pillars) will have a safety factor of 1.39 or greater with less than 1000' of cover. This is acceptable for short-term entries.

Main Entries will have to remain open until room development and pillaring are completed. Since the Mains are under the heavier cover (700' - 1000'), they should not be driven on 60' centers. To help ensure longevity, mains should be driven on 60' x 120' centers or 80'x 80' centers. The safety factors for 80' centers are greater than 2; therefore, these centers are acceptable for either rooms or mains.

Recommendations: Rooms can be driven on either 60' or 80' centers
with a reasonable factor of safety. If rooms are
driven on 60' centers, it is recommended that the
main entries be driven initially on 60'x 120' centers. This will provide a greater factor of safety.
The main pillars could then be split on retreat as
the rooms are developed, to optimize recovery.

If 80' centers are used for both rooms and mains,
a reasonable factor of safety can be expected,
providing that the mains are developed to the limit
before room development or pillaring begins.

Rt. 1, Box 146-H5 - Helper, Utah 84526 - Telephone (801) 637-2422

Summary:

- (1) 4C'x 4C' Pillars (60' Centers)

 Safety Factor © 7CC' Cover = 1.99

 Safety Factor © 1000' Cover= 1.39

 Recovery Factor = 56%
- (2) 40'x 100' Pillars (60'x 120' Centers)

 Safety Factor @ 700' Cover = 2.53

 Safety Factor @ 1000' Cover = 1.77

 Recovery Factor = 44%
- (3) 60'x 60' Pillars (80' Centers)

 Safety Factor & 700' Cover = 3.36

 Safety Factor & 1000' Cover = 2.35

 Recovery Factor = 44%